Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(3): e35397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456309

RESUMO

In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3-7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5-7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50-400 µm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5-13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.


Assuntos
Substitutos Ósseos , Quitosana , Apatitas/farmacologia , Apatitas/química , Substitutos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Durapatita , Quitosana/farmacologia , Quitosana/química , Difração de Raios X , Força Compressiva
2.
J Biomed Mater Res A ; 111(11): 1750-1767, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37353879

RESUMO

Antibiotic-loaded bioactive bone substitutes are widely used for treating various orthopedic diseases and prophylactically to avoid post implantation infection. Calcium deficient hydroxyapatite (also known as apatitic bone cement) is a potential bioactive bone substitute in orthopedics due to its chemical composition similar to that of natural bone minerals. In this study, fabrication of mannitol (a solid porogen) incorporated injectable synthetic (Syn) and eggshell derived (ESD) apatitic bone cements loaded with antibiotics (gentamicin/meropenem/ rifampicin/vancomycin) was investigated. The release kinetics of the antibiotics were studied by fitting them with different kinetic models. All the antibiotics-loaded apatitic bone cements set within clinically accepted setting time (20 ± 2 min) and with good injectability (>70%). The antibiotics released from these bone cements were found to be controlled and sustained throughout the study time. Weibull and Gompertz (applies in least initial burst and sustain drug release rate models) were the best models to predict the release behavior. They cements had acceptable compressive strength (6-10 MPa; in the range of trabecular bone) and were biodegradable (21%-27% within 12 weeks of incubation) in vitro in simulated body fluids at physiological conditions. These bone cements showed excellent antibacterial activity from day 1 onwards and no bacterial colony was found from day 3 onwards. The viability of MG63 cells in vitro after 72 h was significantly higher after 24 h (i.e., ~110%). The cells were well attached and spread over the surface of the cements with extended morphology. The ESD antibiotic-loaded apatitic bone cements showed better injectability, degradation and cytocompatibility compared when compared to Syn antibiotic-loaded apatitic bone cements. Thus, we believe that the ESD antibiotic-loaded apatitic bone cements are suitable as potential injectable bone substitutes to avoid post-operative implant associated and other acute or chronic bone infections.


Assuntos
Antibacterianos , Substitutos Ósseos , Antibacterianos/farmacologia , Cimentos Ósseos/farmacologia , Cimentos Ósseos/uso terapêutico , Cimentos Ósseos/química , Apatitas/química , Sistemas de Liberação de Medicamentos , Durapatita
3.
J Biomed Mater Res B Appl Biomater ; 111(2): 416-428, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36095055

RESUMO

Calcium deficient hydroxyapatite (CDHA)-based apatite forming bone cements are well known for their bioactivity and bioresorbability. The formulation of CDHA-based cements with improved macroporosity, injectability, and resorbability has been investigated. The solid phase consists of nanocrystalline hydroxyapatite (HA) and tricalcium phosphate (ß-TCP). The liquid phase is diluted acetic acid with disodium hydrogen phosphate as binding accelerator along with gelatin and chitosan to improve the injectability. A porogen agent either mannitol (as solid porogen) or polysorbate (as liquid porogen) is also used to improve the porosity. All combined in fine-tuned composition results in optimal bone cements. The cement sets within the clinically preferred setting time (≤20 min) and injectability (>70%) and also stable at physiological pH (i.e., ~7.3-7.4). The XRD and FT-IR analysis confirmed the formation of CDHA phase on day 7 when the after-set cement immersed under phosphate buffer solution (PBS) at physiological conditions. The cements were found to have acceptable compressive strength for trabecular bone substitute. The cements were macroporous in nature with average pore size between 50 and 150 µm and were interconnected as confirmed by SEM, micro-CT and MIP analysis. The prepared cements are degradable up to 22% and 19% in simulated body fluid and PBS respectively within 10 weeks of immersion at physiological conditions. The cements exhibit higher viability (%) (>110%) with L929 and MG63 cells compared to the control after 3 days of incubation. They also show increased proliferation, well spreading and extended filopodia with MG63 cells. Overall, the developed apatite forming bone cements seems to be suitable for low or non-load bearing orthopedic applications.


Assuntos
Cimentos Ósseos , Substitutos Ósseos , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Apatitas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Substitutos Ósseos/química , Força Compressiva , Durapatita , Cimentos de Ionômeros de Vidro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...